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SUMMARY

We consider the Galerkin finite element method (FEM) for the incompressible magnetohydrodynamic
(MHD) equations in two dimension. The domain is discretized into a set of regular triangular elements and
the finite-dimensional spaces employed consist of piecewise continuous linear interpolants enriched with the
residual-free bubble functions. To find the bubble part of the solution, a two-level FEM with a stabi-
lizing subgrid of a single node is described and its application to the MHD equations is displayed.
Numerical approximations employing the proposed algorithm are presented for three benchmark prob-
lems including the MHD cavity flow and the MHD flow over a step. The results show that the proper
choice of the subgrid node is crucial to get stable and accurate numerical approximations consistent
with the physical configuration of the problem at a cheap computational cost. Furthermore, the approxi-
mate solutions obtained show the well-known characteristics of the MHD flow. Copyright © 2009 John
Wiley & Sons, Ltd.

Received 3 July 2008; Revised 19 January 2009; Accepted 19 January 2009

KEY WORDS: stabilizing subgrid; MHD equations; two-level finite element method

1. INTRODUCTION

Magnetohydrodynamics (MHD) is the theory of the macroscopic interaction of electrically
conducting fluid and electromagnetic fields. Applications arise in astronomy and geophysics
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as well as in connection with numerous engineering problems, such as liquid—metal cooling
of nuclear reactors, electromagnetic casting of metals, MHD power generation and MHD ion
propulsion. In MHD problems we deal with a flow of a viscous, incompressible fluid which
has the property of electric current conduction and interacting with electromagnetic fields. The
conducting fluid can induce electric current and interact with the magnetic field. This interaction
in turn produces the Lorentz force on the fluid and can greatly change the fluid behavior. Thus,
MHD flow is governed by the Navier—Stokes and pre-Maxwell equations coupled via the Lorentz
force. The theory and the mathematical modeling of the MHD flow can be found in [1, 2].

A considerable amount of research activity has been devoted to the analysis of numerical methods
for the simulation of MHD flows by using finite difference method (FDM). A nine-node grid FD
approximation was applied to solving MHD equations inside a channel with a rapidly expanded
section, in [3]. A description was made using two vector potentials and the vorticity vector, which
form a system of three simultaneous, quasilinear equations of the elliptic type. Sekhar et al. [4]
have obtained FD solutions in terms of stream function-vorticity for solving the steady MHD flow
past a sphere with an applied magnetic field parallel to the main flow at low and moderate Reynolds
number. In the paper written by Shue and Lin [5], a primitive variable approach for solving the
magnetic field and hydrodynamic field equations has been given with the alternating direction
implicit (ADI) solution algorithm. An extension of the generalized Peaceman and Rachford ADI
scheme was presented in [6]. The discretized conservation equations are solved in stream function-
vorticity formulation for low magnetic Reynolds number. 3-D numerical calculations on liquid—
metal MHD flow through a rectangular channel in the inlet region have been performed by
Kumamaru et al. [7] using the FDM and following the MAC method.

On the other hand, most of the numerical solutions of the MHD equations are performed by
using the finite element method (FEM) because it is more appropriate for a wide class of problem
configurations. The existence of solutions of both continuous and discrete MHD problems without
any condition on the boundary data of the velocity was derived in [8], and Gunzburger et al.
[9] have shown that the existence and uniqueness of the solution of a weak formulation of the
MHD equations can be guaranteed. Meir and Schmidt [10] and Schétzau [11] have carried out
error analysis on their finite element solutions of MHD problems and established optimal-order
error bounds. Mixed FE approximation of incompressible MHD problems based on weighted
regularization has been analyzed by Hasler et al. [12]. Well-posedness of this approach, the
existence and uniqueness of the results, quasi-optimal error bounds were also provided. By using
a two-level FEM (TLFEM) for discretizing the stationary MHD equations, Layton et al. [13]
have proved well-posedness of their algorithm and gave optimal error bounds. In their study,
they have solved the nonlinear problem first on a coarse mesh and then the linear one on a fine
mesh.

The study of MHD duct flows has great relevance for nuclear reactor cooling systems, MHD
flowmeters and MHD micropumps. Such MHD flows have been studied under the assumption
that the flow is fully developed. Then the problem dimensionality reduces from three to two and
the application of the governing equations is allowed only in a transversal section of the duct.
Verardi and Cardoso [14, 15], Krzeminski et al. [16], Tezer-Sezgin and Koksal [17] have given
FE solutions of MHD equations in rectangular ducts. A stabilized FEM using the residual-free
bubble (RFB) functions has been proposed by Neslitiirk and Tezer-Sezgin [18, 19] for solving
steady MHD duct flow problems at high Hartmann numbers.

It is known that the small hydrodynamic diffusion may induce some well-known numerical
instabilities. It is therefore natural to use some stabilization techniques for the solution of MHD
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equations. Gerbeau [20] has carried out a stabilized FEM procedure in terms of velocity u, the
pressure p in the fluid and the magnetic field B, including a convergence proof. A stabilization
technique is used in order to allow equal-order interpolation on tetrahedral elements of all variables.
In the papers by Salah et al. [21,22], Codina and Silva [23], they have presented a stabilized
FEM for the full MHD equations by including a magnetic pressure as unknowns to enforce the
divergence-free condition for the numerical approximation of the magnetic field.

In this study, we deal with the numerical solution of the incompressible MHD equations by a
TLFEM using a stabilizing subgrid . The unknowns in the equations are the primitive variables as
the velocity u, the magnetic field B and the pressure in the fluid p. It is known that, besides the
high values of problem parameters (fluid Reynolds number Re, magnetic Reynolds number Rem
and the Hartmann number Ha), the coupling of the equations produces numerical instabilities.
Therefore, a stabilized formulation should be considered in calculating the approximate solution
of the problem.

We propose a stabilizing subgrid method (SSM) for the approximate solution of the incom-
pressible MHD equations, which is based on the proper choice of the subgrid point inside
each element in a triangular discretization of the domain. The method has been first proposed
for the convection—diffusion problem [24] and extended to the Navier-Stokes equations in
[25]. The velocity and the magnetic field spaces are enriched by the bubble functions that
are added to continuous piecewise-linear function spaces. The function space for the pres-
sure is selected as only the continuous piecewise linears. As a result, a new formulation
similar to the streamline-upwind Petrov—Galerkin (SUPG)-[20] type stabilized formulation of
the MHD equations is obtained. The nonlinearity emanating from the nature of the equa-
tions is treated through iterations. Numerical experiments show that the SSM is robust
and produces accurate approximations compared with the SUPG method at a cheap computational
cost.

We organize the paper as follows. In Section 2, we describe the governing equations of the
MHD flow. In Section 3, we present the standard Galerkin formulation of the problem. We recall
the basics of the stabilized FEMs in Section 4. In Section 5, we describe a TLFEM using the
approximate RBF functions to determine a stabilizing subgrid and display its application to MHD
equations. Implementational issues related to the numerical method under investigation will also
be discussed in this section. We illustrate the potential of the method in Section 6 by presenting
some numerical experiments obtained in different problem configurations. Conclusions are drawn
in Section 7.

2. GOVERNING EQUATIONS IN MHD PROBLEM
MHD equations involve the coupling of hydrodynamic and electromagnetic effects and constitute
a differential system for modeling the incompressible conducting fluid motion in a magnetic
field [20]. These equations in primary unknown variables u, B and p can be given as
1
pu-Vu—nAu+Vp+—B xcurl B= pf
u
divu=0 (D
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1
— curl(curl B) —curl(uxB) =0
uo

divB=0

where u=(u1, uy) is the velocity field, B= (B, By) is the magnetic field and p is the pressure
in the fluid, f denotes the external force, p is the density of the fluid, # is the viscosity, ¢ is the
electrical conductivity and p is the magnetic permeability. In order to bring the MHD equations to
a non-dimensional form, we introduce a characteristic value Uy for the velocity field, the intensity
of the applied magnetic field By and a characteristic length L. The important non-dimensional
parameters in the model are the fluid Reynolds number (Re), the magnetic Reynolds number (Rem),
the Hartmann number (Ha) and the Coupling number (), which are defined as

_ pUoL
n
Rem=puoUyL

Re

2
upUo
Ha=+/ReRem S

In addition, u=1,/Uy, B=B/By, pzﬁ/pU(z) and fzf'L/U(Z) are made use of for the physical
quantities @, B, p and f in the non-dimensionalizing. Then MHD equations in non-dimensional
form are expressed as

u-Vu—iAu-l—Vp—H—az(VxB)szf )

Re Re-Rem
V.u=0 3)
—Vx(uxB)—i—Rc%mVx(VxB)zo 4)
V-B=0 &)

By using the following identities:
V x (VxB)=—V’B+V(V-B)
V-B=0

we can transform the MHD equations (2)—(5) into the following explicit form in 2-D:

owi 0w 1 &2u1+62u1 L (aBl &Bz) ; ©
Uy —~+uy———\|—+—1|+—- ——— )=
ox 2 Jy Re\ oxZ = 0y? 0x 2 Jy 0x :
ouy  ouy 1 [Pur Fur\ dp 0B, 0B,
U —ttr——— | =t == |+ =+ SB[ ————— | = 7
Vox 2 dy Re ( 0x2  0y? ) dy 1( Jdy  Ox ) £ ™
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2 2
0B, 0B1 Oup Ouq 1 0By 0 B
P, Mg Mg, -0 8
Mgy TG v B 2 Rem<ax2+ay2) ®
0By, 0By ouy . oup 1 (°By B,
"Uox T Jy + ox > ox ' Rem < ox2  0y? ©)
ou;  Oun
a2 10
ox 0Oy (10)

Before starting to present the numerical methods, we set the notation. We use standard notation
for function spaces: C 0(Q) is the space of continuous functions on the closure of Q, L2(Q) is the
space of square integrable functions over the domain (, L(Z)(Q) is the space of L2(Q) functions

with zero mean over Q, H!(Q) is the Sobolev space of L?(Q) functions whose derivatives are
square integrable functions in Q and HOl (Q) is the Sobolev subspace of H!(Q) functions in Q
with zero value on the boundary 0Q.

3. THE STANDARD FEM FOR MHD EQUATIONS

Consider the incompressible MHD equation in a bounded domain Qe R?

1 Ha?
-Vu——Au+Vp——(VxB)xB=f
uva Re utvpe Re-Rem( xB)x
1
—Vx(uxB)— AB =0 (D
Rem
Vau=0

with the appropriate boundary conditions. Then the weak formulation of the problem (11) can be
stated as: Find ue V= HO1 (Q)2, Be M=H"'(Q)? and pewW =L(2)(Q) such that

Bu,B,p;v,C,q)={f,v) V(v,C,q)e(V,M, W) (12)

where

B,B, p;v,C,q9) =(Vwu,v)+ é(Vu, Vv)—(p,Vv)—S(VxB)xB,Vv)
—(Vx (uxB), C)+L(VB, VO +(q,V-u)
Rem

To introduce a FEM, we begin by partitioning the domain into triangular elements in a standard
way (e.g. no overlapping, no vertex on the edge of a neighboring elements, etc.) and let {; be
such a partition of Q . We define

Xy ={vy, € COQ), vplx € P(K),VK €Qy)

where Py (K) correspond to the space of kth-order polynomial shape functions over triangular
elements. The finite element spaces employed are as follows: For the velocity component
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u; V;,:(X;,DHO1 (Q))2, for the magnetic field B; Mp=(X)*NHY(Q)? and for the pressure
p; Wp=Xp, ﬂL(Z)(Q). Now the Galerkin finite element formulation of the problems reads: find
(uy, By, pn) € (Vi,, My, Wy,) such that

By, By, pr; vi, Crogn) =&, vi)  Y(Vi, Cp,gn) € (Vi My, Wy) (13)

where

1
B (up, By, pn; vi, Ch, qn) = ((Vllh)llh,VhH-ﬁ(Vuh, Vvp) = (pn, V) =SV xBp) xBp, vj)

1
—(V x(u, xByp), Ch)+@(VBh, VCp)+(qn, V-uy)

We carry out a simple iterative procedure to linearize the nonlinear terms in (13)
vt'=u"4+4 and B"'=B"+B

where u”, B” and u, B are the previous iteration and correction values of the velocity and the
magnetic field, respectively. Thus, we make the following approximations as:

(V" The"H ~ (Ve + (Va4 (Vau”
(VxB"™ ) x B~ (V xB") x B" +(V x B") x B+ (V x B) x B"

Vx @ xB"Ha v x @ xB")+V x @ xB)+V x (i x B")

4. THE SUPG METHOD FOR MHD EQUATIONS

It is known that the existence of the pressure term in the MHD equations brings some oscillations
to the numerical solution when the standard Galerkin FEM is employed. In order to eliminate
these numerical difficulties, an appropriate pair of finite element spaces satisfying Babuska—Brezzi
condition must be used [26,27]. A possible choice is to use quadratic shape functions for both
the velocity and the magnetic field variables and linear shape functions for the pressure (Q2—
Q2 — Q1 elements). However, the Babuska—Brezzi condition does not allow the use of equal-order
interpolations that are the most favorable choice from the computational point of view. Another
possibility to get rid of unphysical oscillations in the numerical solution is to use stabilized FEMs
in the solution procedure that allows to use equal-order shape functions. One of the most favorite
class of stabilized formulations goes under the name SUPG [28,29] and the application of one
of its variants to the MHD equations using linear elements is given in [20]: Find (u;, By, p1) €
(V1, My, W) such that

Bg(uy,By, p1;v1,Cy,q1)+ Bsupg(ur, By, p1;vi, Ci,q1)
=(f, vi)+ Fsupc(v1,C1,q1) Y(v1,Ci,q1) € (Vi, My, Wy) (14)
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where

Bsupg(u1, By, p1;v1, C1,q1)

= Y BP0 (Vu)u +Vpi+SBy x (VxB)), (Vv)uy + Vg + By x (V x Cp))
KeQy,

+ 3 P9 (=Vx (u xBy), —V x (v xBy))
KeQy,

Fsupg(v1,C1,q1)= Y ©FCE, (Vv)ur + Vg1 + By x (V xC1)) (15)
KeQy,

with the stabilization parameters

h
5 K_ it pe>1 )
SUPG _ oyl and _CSUPG_h_K (16)
u - 5 B - 12ﬂ
K if Pex<l1
12¢

where hg is the diameter of the element K, Peg = |u’1’|Kh k /6¢ is the Peclet number, e=1/Re
and f=1/Rem.

The SUPG method is computationally cheap and practically easy to implement. Although it
is a very effective way of obtaining numerically stable solutions, the fact that it gives too much
diffusion to the system that causes the method to receive critics.

5. THE STABILIZING SUBGRID METHOD (SSM)

In this section, a more accurate stabilized formulation, the SSM is presented for the solution of
the MHD equations. The key idea is to enrich the finite element spaces with some appropriate
functions so that the resulting numerical method gives rise to a stabilized formulation without
increasing the size of stiffness matrix. In that context, the finite element approximation spaces for
the velocity and the magnetic field are enriched by using bubble functions

Vi=Vi®Vp and Mp=M SMp

where V| and M| are the linear interpolation spaces, Vp and Mp are the bubble function spaces
whose elements vanish on the element boundary. We choose the bubble functions we employ in a
special manner such that u, € Vp and B, € Mp satisfy the following equations inside each K:

(VI )t — AT T+ VeI - SV xBIT x BY =f
in K
—~Vx @} xBIT) —pABIH +BI T =0 )
(17
uz—H =0
on 0K
BZ+1 — O
Then, this special choice of bubble functions in (17), so-called the RFB, enables us to employ the
static condensation procedure, from which we obtain the Galerkin formulation using piecewise
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linears for the problem (13) modified by the RFBs [30—34]. Thus, the resulting numerical method
reads: Find (uy, By, p1) € (Vy, My, W) such that

Bg(uy,By, p1;v1,Ci,q1) + B (up, By, p1;v1,Cy,q1) = (£, v1)
(18)
V(v1,Ci,q1) € (Vi, My, Wy)

where

Bg(uy, By, p1;v1, Cr,q1) = (Vupuy, v) +e(Vuy, Vvy) — (p1, Vv) = S((V xBy) x By, vp)

—(Vx(u; xBy),C1)+B(VB1,VC1)+(q1, V-uy)

B (up, By, p1;v1,C1,q1) = (Vup)ug, vi) +e(Vuy, Vv) —S((V xBp) x By, vp)

—(Vx (up xBy1),Cp)+B(VBy, VC)+(q1, V-up)

It can be proved that the elimination of the terms containing bubble functions in (18) gives rise
to a formulation similar to a stabilized FEM of the SUPG type. Following the lines of [35], one
can prove that

B (up, By, p15v1, C1,q1) = B ((Vay)u; +Vpy +SBy x (VxBy) —f, (Vv)u; + Vg + By

x (V x Cl))—i—rl;FB(V x (u; xBp), Vx(vi xBy))

These additional terms make the numerical method to recover the physical structure of the problem,
and thus are responsible for the stability of the numerical method. We note that the SSM and the
SUPG formulations of the MHD equations have the identical structure except for the value of the

stabilization parameters 7, and tp. In the SSM, the stabilization parameters ‘CEFB and rléFB are
explicitly given by
i, l,
RFB u RFB B
o =— | b%dK and 7t =— [ bgdK (19)
T BTk Ji K

where b% and bfé are the unique solutions of the following boundary-value problems in a typical
element K:

—eAb% +u]-Vby =1 in K
(20)
b =0 ondK
and
—BABE =1 inK
(2D
b =0 onodk

Equation (20) above is of convection—diffusion type and therefore the bubble component of the
velocity variable has the major influence on the stabilization of the method.
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Note that, finding the exact solutions b% using (20) and bg using (21) may not be an easy task
in an arbitrary triangular domain. Therefore, a cheap and efficient approximation to b7( and bllz
which generates qualitatively the same behavior with the exact function b% and bg is required. In
that context, we specify a subgrid that consists of three vertices denoted by V; of the triangle plus a
single additional node N joined to the three vertices in the interior of each element and approximate
the bubble function over the specified subgrid by choosing the location of the additional node
such that it gives the best approximation in L norm. This technique was first proposed by Brezzi
et al. in [24] and extended to the Navier—Stokes equations in [25].

The problem (21) is free of convection terms and therefore it is sufficient to take the subgrid
node at the triangle’s center of gravity. The other problem (20) is more elaborate and the location
of the subgrid point is determined using the following two cases: In the first case, where the inflow
boundary makes up two edges, let e; and e3 be two inflow edges (Figure 1). Denote the set of
points on the median Vi M as a function depending on a single parameter t: N=(1—t)V|+tM
where O<t<1. Then as the value for 7, we take

e(ler]?) . 2|K|(a},v)/3
r=1+ 22 T ST e 2 2
o(le2 —e3]” — 3| K| (U}, vi)) le1|"+ ez —es] 22)
2 .
t= 3 otherwise

where uf is the arithmetic average of velocities at the vertices and we denote the length of e; by
le;|, the outward unit normal to e; by n; and v; =|e;|n; [36]. In the other case where the inflow
boundary makes up of a single edge, let e; be the inflow edge (Figure 1). Then ¢ is taken as

B e(lea]*+les|?) . —2|K (&}, v1)/3
e(lex—e3]2/2— K |(@], v)/3) T3(leal? + le3 ) —lex —e3)? o3
2 _
= 5 otherwise

Once the location of the subgrid points is determined, a reasonably good approximation to the

stabilization parameter ’C};FB and ‘E%FB can be obtained. The approximate values of ‘EEFB and T};FB
v, A
e, ©1 e,
T M M
\4 e v,
e, €
VZ V3
Case 1: Two inflow edges Case 2: One inflow edge
Figure 1. Types of inflow boundaries.
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Galerkin Exact

p, min =-19.6073, max =7.21989 p, min =-2.09726, max = 1.09726

Figure 2. Pressure elevations obtained from standard Galerkin FEM versus the exact solution.

SUPG

p, min=-2.11672, max = 1.105 p, min=-2.10967, max = 1.10301

Exact

p, min =-2.09726, max = 1.09726

Figure 3. Pressure contours obtained from the SUPG, the SSM and the exact solutions.
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Figure 4. Zoom for the pressure contours obtained from the SUPG and the SSM.

are computed by the following formulas:

1 1 b4 )? 41K
%‘JFB=—fb‘i<*=— Ux Ki 5= | l (24)
K| Jx (K| e[ IVBY 2™ 963, leil?/IKi]
%RFBzi/bB*zi (Jx 08’ _ 4K | 25)
BTk e UKL [ IVBE2 T 9BY, leil /K|

where K; is the area of the ith sub-triangle, b% ™ and bllg* are the pseudo-bubble functions that

approximate to b and blli , respectively [24]. Once we find %};FB and %%FB, we use them in Equation

(18) in place of rl,}FB and r%FB.

6. NUMERICAL RESULTS

In this section, we present some numerical results obtained by the SSM presented above and
compare it with the well-known results in the literature. We work on three problems: (1) a test
problem on a unit square with exact solution; (2) MHD flow inside a cavity; and (3) MHD flow
over a step. We use the tool Visualization Generale Interactive d’Ecoulements to visualize the
numerical results. The iteration cycle that resolves the nonlinearity of the problem stops when the
maximum norm of the error is less than 1076,

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:188-210
DOI: 10.1002/fid



TLFEM WITH A STABILIZING SUBGRID FOR MHD EQUATIONS

i P R |
S S S S SN SN SNttt s s s
\\\\\\ T T R N e N VAN
I i T e

[

I

B e e B s g

Rl P P A A A A a4

///////// [ NN NN
BN N e |

199

Figure 5. Velocity flow vectors and adaption of the position of the subgrid point.
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Velocity flow on the top of the cavity

u (1,0)

o o o
L v L

By (1,0) RRRRRRARRRY
—p

If the applied magnetic field
is through +x-direction

|

B() (0~1)
If the applied magnetic field
is through +y-direction

Figure 6. The problem statement and a uniform mesh with 3200 triangular elements used in the
approximation of the cavity flow problem.

6.1. A test problem with the exact solution

We solve the MHD equations on the following test problem. Boundary conditions are obtained
from the exact values of u1, uy, By, By and p, which satisfy Equations (6)—(10) with Re =100,
Rem =10 and Ha =10 on the unit square [0, 1] x [0, 1] given in [5] as

ui = 1—exp(x) cos(2my)
Uy = exp(x) sin(2my)/(2m)
By = cos(mx) cos(my) (26)
B, = sin(rx) sin(my)
p=(1—exp(2x))/2+C

where C is any constant value. We have already noted that the pressure is determined up to a
constant. Therefore to satisfy the condition fQ p =0 for the pressure, the value of C is selected as
C=1.0972640247327.

The test problem is first solved by using linear shape functions for all unknowns. In Figure 2
it can be seen that there are oscillations in the pressure values if the standard Galerkin FEM is
employed to obtain the approximate solution. The exact solution is smooth though.

In order to obtain stable solutions for the MHD equations, stabilized FEMs should be used.
The same test problem is solved by using the SUPG and the SSM methods and obtained solutions
are compared with the exact one. We will concentrate on the pressure solutions in which the
stabilization is more apparent.

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:188-210
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SUPG Ha0 SSM Ha0 BabuskaBrezzi Ha0

p, min =-0.0590911, max = 0.493543 p, min =-0.115918, max =0.716923 p, min =-0.311059, max = 1.17124

SUPG HalO SSM Hal0O BabuskaBrezzi Hal0

p. min =-0.0671373, max = 0.473249 p, min =-0.12463, max = 0.695679 p. min =-0.322675, max = 1.14661

SUPG Hal00 SSM Hal00 BabuskaBrezzi Hal00

p, min =-0.148306, max =0.471691 p, min =-0.220125, max = 0.670419 p. min =-0.460975, max = 1.13513

Figure 7. Pressure elevations obtained from the SUPG, the SSM and the formulation using Babuska—Brezzi
condition for Ha=0, Ha=10 and Ha =100 (applied magnetic field is through +x direction).

Table 1. Error of the pressure variable in L, norm.

Hartmann number SSM SUPG
0 0.0057153469 0.0072926928
10 0.0043141906 0.0056119763
100 0.0038388398 0.0054411338
Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:188-210
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Ha0 Hal00

ul, min =-0.267119, max =1 ul, min =-0.156689, max =1

Figure 8. Velocity component (1) contours for Ha=0 and Ha =100 with the SSM (applied magnetic
field is through +x direction).

Ha0

Figure 9. Streamlines of the velocity for Ha =0 and Ha =100 with the SSM (applied magnetic
field is through +x direction).

It is seen from Figure 3 that the SSM produces more accurate approximations compared with
the SUPG method although the stabilization is pronounced in both the methods. The SSM is more
effective in the elimination of the disturbances and oscillations in the pressure solution. This can
be observed clearly from Figure 4. Notice that the pressure contours obtained from the SSM are
smoother than the contours obtained from the SUPG.
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Figure 10. Flow vectors of the magnetic field for Ha=0 and Ha =100 with the SSM (applied magnetic
field is through +x direction).

The position of the subgrid point is determined by the direction and magnitude of the velocity
flow vector during the iteration process. In Figure 5, the resulting velocity flow vector and the
location of the subgrid point that plays the main role in the stabilization are displayed over the
global mesh. One can observe that in the regions where the magnitude of the velocity is large,
the adaptation of the location of the subgrid point is more pronounced. This shows that the location
of the subgrid point is critical in the stabilization.

6.2. Cavity flow

MHD equations (6)—(10) are solved in a square cavity (Figure 6). Fluid Reynolds number and the
magnetic Reynolds numbers are fixed at Re=400, Rem =40 in the calculations. The effect of
the different values in the Hartmann number (Ha =0, 10, 100) is investigated in the flow under a
constant applied magnetic field through +x-direction. Dirichlet-type boundary conditions for the
magnetic field components are imposed on all over the boundaries as Bo= (1, 0) when the applied
magnetic field is through 4x-direction and By=(0, 1) when the applied magnetic field is through
+y-direction. The fluid is moving through +x-direction at the top of the cavity with u1=1 and
up =0 and zero on all the other boundaries.

In Figure 7, pressure elevations for different values of the Hartmann number are displayed
for three different methods (the SUPG, the SSM and the formulation satisfying Babuska—Brezzi
condition). It can be concluded that the SSM again predicts the solution more accurately compared
with the SUPG method and captures the characteristic behaviors of the pressure very well.
It is more apparent from the errors of the pressure variable in standard L, norm, given in
Table I, that the SSM solution is superior to the SUPG solution. In drawing pressure eleva-
tions and in the calculation of L norms, the formulation satisfying Babuska—Brezzi condition
is taken as a reference solution. The existence of the boundary layer formation, which is the

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:188-210
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HalO

p, min =-0.126982, max = 0.684394 p, min =-0.280725, max = 0.200934

HalO Hal00

ul, min =-0.225696, max = 1 ul, min=-0.0864218, max =1

HalO

B1, min=-0.191294, max = 1.01707 B1, min =0, max = 0.418229

Figure 11. Pressure, the first component of the velocity and the magnetic field contours for Ha =10 and
Ha =100 with the SSM (applied magnetic field is through 4y direction).
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Figure 12. Streamlines for the velocity and flow vectors of the magnetic field for Ha =100 with the SSM
(applied magnetic field is through +y direction).

. 1.0 o
u=0
Y ry
u=u;, 0.125
0.25 U=,
b 0.25 C
k4
Applied magnetic field
u=0

Figure 13. The problem statement and a uniform mesh with 7168 triangular
elements used in the approximation.
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Figure 14. Pressure contours for Ha=0, Ha=5 and Ha=10.

well-known behavior of the MHD flows, is displayed in Figure 8 in terms of the first component
of the velocity as Hartmann number increases . Streamlines for the velocity and flow vectors
for the magnetic field are also displayed in Figures 9 and 10, respectively. Obtained solutions,
which are compatible with the solutions in the literature, show the validity of the proposed
method.

The cavity flow problem is also solved with the SSM when the magnetic field is applied
through +y-direction for the same fluid Reynolds number and magnetic Reynolds number and
Hartmann numbers 10 and 100. In Figure 11, it is seen that as Hartmann number increases,
pressure contours are getting perpendicular to the y-axis and boundary layer formation in the
velocity and in the magnetic field are pronounced more clearly. The same behavior is observed
from the streamlines of the velocity and flow vectors of the magnetic field in Figure 12. We
also note that the solutions presented here show consistency with the numerical results in the
literature [6, 16, 22].
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H10

Figure 15. The contour plot of the x-component of the magnetic field B for Ha=5 and Ha=10.

6.3. MHD flow over a step

This is another standard benchmark problem. The statement of the problem and the mesh is given
in Figure 13. The flow of the fluid is through +x-direction and applied magnetic field is through
+y direction. The walls of the pipe are considered perfect conductors. The velocity is prescribed
at the inlet and the outlet to a Poiseuille profile such that ugy = %uin. The problem is solved with
the SSM for Re=100, Rem =1 and Hartmann numbers 0, 5 and 10.

Figures 14 and 15 show the magnetic field effect in the pressure and in the x-component of the
magnetic field as Hartmann number increases, respectively. It is displayed in terms of streamlines
in Figure 16 such that the recirculation after the step decreases as Hartmann number increases.
Obtained solutions are in a good agreement with the other solutions in the literature [20, 23].

7. CONCLUSION

We consider a SSM for the approximate solution of the incompressible MHD equations in the
framework of the TLFEM. The domain is planar and the discretization is triangular. The presen-
tation above shows that the TLFEM with the stabilizing subgrid produces stable and accurate
approximations in a variety of problem configurations establishing that it is applicable to nonlinear

Copyright © 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 62:188-210
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Figure 16. Velocity flow vectors and streamlines zoom in behind the step for Ha=0, Ha=5 and Ha=10.

problems in two-dimension. Numerical experiments further indicate that the proper choice of the
subgrid node may play a significant role in obtaining more accurate approximations, especially
for high Reynolds and moderate Hartmann numbers.
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